
A Plea for Adaptive Data Analysis:A Plea for Adaptive Data Analysis:
An introduction to EMD

Norden E. Huang
Research Center for Adaptive Data Analysis

National Central University

Academia SinicaAcademia Sinica
2010/10/13



Traditional Data AnalysisTraditional Data Analysis

In pursue of mathematic rigor andIn pursue of mathematic rigor and 
certainty, however, we are forced to

to live in a pseudo-real world, in which all 
processes areprocesses are

Linear and Stationary



Available ‘Data Analysis’ MethodsAvailable Data Analysis Methods
for Nonstationary (but Linear) time series

• SpectrogramSpectrogram
• Wavelet Analysis
• Wigner-Ville Distributions• Wigner-Ville Distributions
• Empirical Orthogonal Functions aka Singular Spectral 

AnalysisAnalysis
• Moving means
• Successive differentiationsSuccessive differentiations



Available ‘Data Analysis’ Methods
for Nonlinear (but Stationary and Deterministic)for Nonlinear (but Stationary and Deterministic)

time series

• Phase space method
• Delay reconstruction and embedding
• Poincaré surface of section
• Self-similarity, attractor geometry & fractals

• Nonlinear Prediction

• Lyapunov Exponents for stability



Typical Apologia

• Assuming the process is stationary ….

• Assuming the process is locally stationary ….

• As the nonlinearity is weak, we can use perturbation 
approach ….

Though we can assume all we want, but 
the reality cannot be bent by the assumptions.



Motivations for alternatives: 
Problems for Traditional Methods

• Physical processes are mostly nonstationary

• Physical Processes are mostly nonlinear

• Data from observations are invariably too shortData from observations are invariably too short

• Physical processes are mostly non-repeatable.  

Ensemble mean impossible, and temporal mean might not 
be meaningful for lack of stationarity and ergodicity. 
T di i l h d i dTraditional methods are inadequate.



Hilbert Transform : Definition
pFor any x( t ) L ,

1 x( )y( t ) d ,
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then , x( t )and y( t ) form the analytic pairs:
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where
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Instantaneous Frequency

distanceVelocity ; mean velocityVelocity ; mean velocity
time

dxNewton v
dt



 
dt

1Frequency ; mean frequencyFrequency ; mean frequency
period

dHHT defines the phase function
dt
 

dt

So that both v and can appear in differential equations.



Why the traditional approachWhy the traditional approach 
does not work?



Hilbert Transform a cos + b : Data



Hilbert Transform a cos + b : 
Phase Diagram



Hilbert Transform a cos + b : 
Phase Angle Details



Hilbert Transform a cos + b :Hilbert Transform a cos + b : 
Frequency



Hilbert Huang Transform (HHT)
• Empirical Mode Decomposition (EMD)

Hilbert-Huang Transform (HHT)
p ca ode eco pos o ( )

– Decompose multiscale data into 
Intrinsic Mode Functions (IMF)Intrinsic Mode Functions (IMF)

• Hilbert Spectrum Analysis
– Hilbert Transform of IMF 

-> Analytic Signal> Analytic Signal
-> Instantaneous Amplitude & Phase

I t t F-> Instantaneous Frequency 
-> Hilbert Spectrum
-> Marginal Spectrum



The Empirical Mode Decompositionp p
Method and Hilbert Spectral Analysis

SiftingSifting



Empirical Mode Decomposition: 
Methodology : Test Data



Empirical Mode Decomposition: 
M th d l d t d 1Methodology : data and m1



Empirical Mode Decomposition: 
Methodology : data & h1Methodology : data & h1



Empirical Mode Decomposition: 
Methodology : h1 & m2gy



Empirical Mode Decomposition: 
Methodology : h3 & m4gy



Empirical Mode Decomposition: 
Methodology : h4 & m5gy



E i i l M d D itiEmpirical Mode Decomposition
Sifting : to get one IMF component
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Empirical Mode Decomposition: 
Methodology : IMF c1gy



The Stoppage Criteriapp g

Th C h i i h SD i ll hThe Cauchy type criterion:  when SD is small than a pre-
set value, where

T
2

k 1 k
t 0

h ( t ) h ( t )
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Or, simply pre-determine the number of 
iterations and many other alternativesiterations and many other alternatives.



Effects of SiftingEffects of Sifting

• To find the IMF component so that 
Instantaneous Frequency could be calculated 
through removing the ridding waves

• But it also reduces amplitude variations 
(Theorem by Wang Gang, et al. 2010)(Theorem by Wang Gang, et al. 2010)

Most importantly to find the mean for a non• Most importantly, to find the mean for a non-
stationary time series through a Local Reynolds 
MeanMean.



Definition of the Intrinsic Mode FunctionDefinition of the Intrinsic Mode Function 
(IMF): a necessary condition only!

Any function having the same numbers of
zero cros sin gs and extrema ,and also having
symmetric envelopes defined by local max ima



and min ima respectively is defined as an
Intrinsic Mode Function ( IMF ).

All IMF enjoys good Hilbert Transform :

i ( t )c( t ) a( t )e  



Empirical Mode Decomposition: 
M th d l d t 1 d 1Methodology : data, r1 and m1



Empirical Mode Decomposition
Sifting : to get all the IMF components
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An Example of Sifting



Length Of Day Data



LOD :  IMF



LOD : Data & c12



LOD : Data & Sum c11-12



LOD : Data & sum c10-12



LOD : Data & c9 - 12



LOD : Data & c8 - 12



LOD : Detailed Data and Sum c8-c12



LOD : Data & c7 - 12



LOD : Detail Data and Sum IMF c7-c12



LOD : Difference Data – sum all IMFs



D fi iti f I t t FDefinition of Instantaneous Frequency

The Fourier Transform of the Instrinsic M ode
Funnction , c( t ), gives

i ( t )

, ( ), g

W ( ) a( t ) e dt   
t

By Stationary phase approxim ation we have



y y p pp

d ( t ) ,  ,
dt

This is defined as the Ins tan tan eous Frequency .



This is defined as the Ins tan tan eous Frequency .



The combination of Hilbert Spectral Analysis and 
Empirical Mode Decomposition has been  

designated by NASA as

HHT

(HHT vs. FFT)



Jean Baptiste Joseph FourierJean-Baptiste-Joseph Fourier

1807 “On the Propagation of Heat in Solid Bodies”

1812 Grand Prize of Paris Institute1812 Grand Prize of Paris Institute

“Théorie analytique de la chaleur” 

‘... the manner in which the author arrives at 
these equations is not exempt of difficulties and 
that his analysis to integrate them still leaves 
something to be desired on the score of generality 
and even rigor ’and even rigor.

1817 Elected to Académie des Sciences

1822 Appointed as Secretary of Math Sectionpp y

paper published

F i ’  k i   t th ti l Fourier’s work is a great mathematical poem.
Lord Kelvin



Comparison between FFT and HHT

1 . F F T :
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Comparisons: p
Fourier, Hilbert & Wavelet



Speech AnalysisSpeech Analysis
Hello : Data



Four comparsions D



ComparisonsComparisons
Fourier Wavelet Hilbert

Basis a priori a priori Adaptivep p p

Frequency Integral transform: 
Global

Integral transform: 
Regional

Differentiation:
Local

Presentation Energy-frequency Energy-time-
frequency

Energy-time-
frequency

Nonlinear no no yes

Non-stationary no yes yes

Uncertainty yes yes no

H iHarmonics yes yes no
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History of HHT
1998: The Empirical Mode Decomposition Method and the Hilbert Spectrum for 

Non-stationary Time Series Analysis,  Proc. Roy. Soc. London, A454, 903-995. 
The invention of the basic method of EMD, and Hilbert transform for determiningThe invention of the basic method of EMD, and Hilbert transform for determining 
the Instantaneous Frequency and energy.

1999: A New View of Nonlinear Water Waves – The Hilbert Spectrum, Ann. Rev. 
Fluid Mech.  31, 417-457.
I t d ti f th i t itt i d itiIntroduction of the intermittence in decomposition. 

2003:  A confidence Limit for the Empirical mode decomposition and the Hilbert 
spectral analysis, Proc. of Roy. Soc. London, A459, 2317-2345.
Establishment of a confidence limit without the ergodic assumptionEstablishment of a confidence limit without the ergodic assumption.  

2004: A Study of the Characteristics of White Noise Using the Empirical Mode 
Decomposition Method, Proc. Roy. Soc. London, A460, 1597-1611
Defined statistical significance and predictability. g p y

2007: On the trend, detrending, and variability of nonlinear and nonstationary time 
series.  Proc. Natl. Acad. Sci., 104, 14,889-14,894.
The correct adaptive trend determination method

2009:  On Ensemble Empirical Mode Decomposition.  Advances in Adaptive Data 
Analysis, 1, 1-41, 2009.

2009: On instantaneous Frequency Advances in Adaptive Data Analysis 1 177-2009:  On instantaneous Frequency.  Advances in Adaptive Data Analysis 1, 177-
229, 2009.

………………………..



 new Journal dedicated 
 the new data analysis 
proaches



Some Recent AdvancesSome Recent Advances

• Ensemble EMD (EEMD)
• Instantaneous Frequency (Quadrature)Instantaneous Frequency (Quadrature)
• Quantification of Hilbert Spectrum
• Multi-Dimensional EEMD (MDEEMD)
• Time Dependent Intrinsic Correlation• Time Dependent Intrinsic Correlation 

(TDIC)



Some Recent AdvancesSome Recent Advances

• Ensemble EMD (EEMD)
• EEMD Instantaneous FrequencyEEMD Instantaneous Frequency 

(Quadrature)
Q tifi ti f Hilb t S t• Quantification of Hilbert Spectrum

• Multi-Dimensional (MDEEMD)u t e s o a ( )
• Time Dependent Intrinsic Correlation 

(TDIC)(TDIC)





Procedures for EEMDProcedures for EEMD
Add hit i i t th t t d d t• Add a white noise series to the targeted data;

• Decompose the data with added white noise 
i t IMFinto IMFs;

• Repeat step 1 and step 2 again and again, but 
ith diff t hit i i h ti dwith different white noise series each time; and

• Obtain the (ensemble) means of 
di IMF f th d iticorresponding IMFs of the decompositions as 

the final result.



EXAMPLE : ORIGINAL DATAEXAMPLE : ORIGINAL DATA
O r i g i n a l  D a t a

- 0 . 5

0

0 . 5

1

- 1

1

E 1 :  O r i g i n a l  D a t a  +  0 . 1 * R A N D N / s t d ( O i g i n a l  d a t a )

- 1

- 0 . 5

0

0 . 5

0 . 5

1

M e a n  E 5 0  d a t a  

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0

- 1

- 0 . 5

0



EXAMPLE : ORIGINAL DECOMPEXAMPLE : ORIGINAL DECOMP.
C 1  o f  t h e  O r i g i n a l  D a t a

- 1

0

1

0

1

C 2  o f  t h e  O r i g i n a l  )

- 1

0 . 2
C 3  o f  t h e  O r i g i n a l  )

- 0 . 2

0

0 . 2
R e m a i n d e r  o f  t h e  O r i g i n a l  )

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0
- 0 . 2

0



EXAMPLE : E1 DECOMPEXAMPLE : E1 DECOMP.



EXAMPLE : E10 DECOMPEXAMPLE : E10 DECOMP.



EXAMPLE : E100 DECOMPEXAMPLE : E100 DECOMP.



EXAMPLE I: ORIGINAL DATAEXAMPLE I: ORIGINAL DATA
ORIGINAL DATA ( blue: RSS T2; red: UAH T2 )

1

1.2
ORIGINAL DATA ( blue: RSS-T2; red: UAH-T2 )

0 4

0.6

0.8

0

0.2

0.4

-0.4

-0.2

1980 1985 1990 1995 2000
-0.8

-0.6



EXAMPLE I: DECOMPOSITION (I)EXAMPLE I: DECOMPOSITION (I)
C1 ( blue: RSS-T2; red: UAH-T2 )

-0.2

0

0.2

-0 2

0

0.2

C2 ( blue: RSS-T2; red: UAH-T2 )

-0.2

0

0.5
C3 ( blue: RSS-T2; red: UAH-T2 )

-0.5

0

0.5
C4 ( blue: RSS-T2; red: UAH-T2 )

1980 1985 1990 1995 2000
-0.5

0



EXAMPLE I: DECOMPOSITION (II)EXAMPLE I: DECOMPOSITION (II)
C5 ( blue: RSS-T2; red: UAH-T2 )

0 1

0

0.1

0.2

C5 ( blue: RSS-T2; red: UAH-T2 )

-0.2

-0.1

0.2
C6 ( blue: RSS-T2; red: UAH-T2 )

-0.1

0

0.1

-0.2

0.5
TREND ( blue: RSS-T2; red: UAH-T2 )

1980 1985 1990 1995 2000
-0.5

0

1980 1985 1990 1995 2000



EXAMPLE I: NOISY DATA
(added noise std=0.1)

1

1.2
ORIGINAL DATA ( b: RSS-T2; r: UAH-T2; g: RSS-T2-esb01; m: UAH-T2-esb01 )
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1980 1985 1990 1995 2000
-0.8

-0.6



NOISY DATA DECOMPOSITION (I)
(added noise std=0.1)

0 2

0

0 .2

C 1  ( b lu e :  R S S -T2 ;  red :  U A H -T2  )

-0 .2

0

0 .2

C 2  ( b lu e :  R S S -T2 ;  red :  U A H -T2  )

-0 .2

0

0 .5
C 3  ( b lu e :  R S S -T2 ;  red :  U A H -T2  )

-0 .5

0

C 4  ( b lu e :  R S S -T2 ;  red :  U A H -T2  )

0 5

0

0 .5

1 98 0 1 9 8 5 19 9 0 1 99 5 2 0 0 0
-0 .5



NOISY DATA DECOMPOSITION (II)
(added noise std=0.1)

0

0 . 1

0 . 2

C 5  ( b lu e :  R S S -T2 ;  re d :  U A H -T2  )

-0 . 2

-0 . 1

0 . 2
C 6  ( b lu e :  R S S -T2 ;  re d :  U A H -T2  )

-0 . 1

0

0 . 1

-0 . 2

0 . 5
TR E N D  ( b lu e :  R S S -T2 ;  re d :  U A H -T2  )

1 9 8 0 1 9 8 5 1 9 9 0 1 9 9 5 2 0 0 0
-0 . 5

0

1 9 8 0 1 9 8 5 1 9 9 0 1 9 9 5 2 0 0 0



Definition of IMF in EEMDDefinition of IMF in EEMD

The truth defined by EEMD is given by the number of the 
ensemble approaching infinite:

 1 N

j k kc ( t) = lim c (t) + r ( t ) ,j   
1

j ,kN k
k( ) ( ) ( ) ,j N  



j ,k kin  w h ic h       is  th e  

k -th  r e a liza tio n  o f  th e  j- th  IM F  in  th e  n o ise  

c ( t) + r ( t )

a d d e d  s ig n a l, a n d   is  th e  m a g n itu d e  o f  th e  
a d d e d  n o ise  th a t is  n o t n e c e s sa r ily  sm a l


l .   



SummarySummary

T IMF b d i d f ddi• True IMFs can be derived from adding 
finite amplitude of noise, rather than the 
case with infinitesimal noises. 

• Ensemble EMD indeed enables the 
signals of similar scale collated togethersignals of similar scale collated together.

• No need for a priori criteria for 
intermittency.



SummarySummary

L d ti th EMD• Less adaptive than EMD.

• As the components produced by EEMD 
are the averaged values of many IMFsare the averaged values of many IMFs, 
they might not be IMFs:  some of the 
component might have multi-extremacomponent might have multi-extrema.  
More stringent stoppage criteria and/or 
trials in the ensemble can improve thetrials in the ensemble can improve the 
situation.



Some Recent AdvancesSome Recent Advances

• Ensemble EMD (EEMD)
• Instantaneous Frequency (Quadrature)Instantaneous Frequency (Quadrature)
• Quantification of Hilbert Spectrum
• Multi-Dimensional EEMD (MDEEMD)
• Time Dependent Intrinsic Correlation• Time Dependent Intrinsic Correlation 

(TDIC)





Bedrosian TheoremBedrosian Theorem

Let  f(x) and  g(x) denotes generally complex functions in ( ) g( ) g y
L2(-∞, ∞) of the real variable x.  If  

(1) the Fourier transform F(ω) of f(x) vanished for │ω│> a(1)  the Fourier transform F(ω) of  f(x) vanished for │ω│> a 
and the Fourier transform G(ω) of  g(x) vanishes for 
│ω│< a, where a is an arbitrary positive constant, or

(2) f(x) and g(x) are analytic (i. e., their real and imaginary 
parts are Hilbert pairs),

then the Hilbert transform of the product of  f(x) and g(x) is 
given 

H { f(x) g(x) }  =  f(x)  H { g(x) }  .

Bedrosian E 1963: A Product theorem for HilbertBedrosian, E., 1963: A Product theorem for Hilbert 
Transform, Proceedings of the IEEE, 51, 868-869.



Nuttall Theorem

For any function x(t), having a quadrature xq(t), and a 
Hilbert transform xh(t); thenHilbert transform xh(t); then,

2( ) h( ) d



2

0

0

E xq( t ) xh( t ) dt 
0

2

q2 F ( ) d , 


 

where Fq(ω) is the spectrum of xq(t).



w e e q(ω) s e spec u o xq(t).

N tt ll A H 1966 O th d t i ti t th Hilb tNuttall, A. H., 1966: On the quadrature approximation to the Hilbert 
Transform of modulated signal, Proc. IEEE, 54, 1458



Problems with Hilbert Transform method

• If there is any amplitude change, the Fourier Spectra for the 
envelope and carrier are not separable.  Thus, we violated the p p ,
limitations stated in the Bedrosian Theorem; drastic amplitude 
change produce drastic deteriorating results. Nuttall theorem 
further reduce the applicability of Hilbert transform.

• Once we cannot separate the envelope and the carrier, the 
analytic signal through Hilbert Transform would not give the 
phase function of the carrier alone without the influence of thephase function of the carrier alone without the influence of the 
variation from the envelope.

• Therefore the instantaneous frequency computed through the• Therefore, the instantaneous frequency computed through the 
analytic signal ceases to have full physical  meaning; it provides 
an approximation only.



Quadrature : ProceduresQuadrature : Procedures

N li th IMF i th NHHT th d• Normalize the IMFs as in the NHHT method.

• Compute IF (FM) from Quadrature of N-data as follows:p ( )

Q u a d ra tu re m eth o d

2 1

Q

yN li d 1 ( t ) t 2 1 yN o rm a lized x ; y 1 x ; ( t ) ta n
x

  

d ( t )( t ) .
d t


 



Hello : Data c3y(8)Hello : Data  c3y(8)



Hello : Check Bedrosian Theorem





Hello : Instantaneous Frequency & data c3y(8)Hello : Instantaneous Frequency & data c3y(8)



Hello : Instantaneous Frequency & data Details c3y(8)Hello : Instantaneous Frequency & data Details c3y(8)



SummarySummary
• Instantaneous Frequency could be calculated 

routinely from the normalized  IMFs through 
quadrature (for high data density) or Hilbert 
Transform (for low data density).

• For any signal, there might be more than one IF 
value at any given time.

• For data from nonlinear processes, there has to 
be intra-wave frequency modulations; therefore,be intra wave frequency modulations; therefore, 
the Instantaneous Frequency could be highly 
variable.variable. 



Some Recent AdvancesSome Recent Advances

• Ensemble EMD (EEMD)
• Instantaneous Frequency (Quadrature)Instantaneous Frequency (Quadrature)
• Quantification of Hilbert Spectrum
• Multi-Dimensional EEMD (MDEEMD)
• Time Dependent Intrinsic Correlation• Time Dependent Intrinsic Correlation 

(TDIC)



Definition of Hilbert Spectrap

The  is defined as the energy density
distribution in a time-frequency space divided into equal size 

Hilbert  Energy Spectrum

2

bins of   with the value in each bin designated as t 
a (t  at th p) r pee o r 

 

 and the time, t, proper instantaneous 
frequency 

The  is defined as the amplitude Hilbert Amplitude Spe

frequency, . 

ctrum



f p
density distribution in a ti

p p
me-frequency space divided into equal size 

bins of   it w  th the value in each bin designated as 
 at the proper time, t, and the proper instantaneous 

frequency,
a(t)

 . 



Schematic of Hilbert Spectrum
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Hilbert Spectrap
Currently, the spectrum is not defined in terms of density.  
The value is simply the energy value at the particuler bin.

To define the spectra in terms of density would facilitate 
comparison with the Fourier spectra which is defined in terms
 of  density.

i , j

Therefore, the value in each bin should be 
a

for amplitude spectra

2
i , j

          for amplitude spectra
t
a

for energy spectra

 

         for energy spectra
t

 
 



Definition of the Marginal Hilbert Spectrum
Given the Hilbert Spectrum as H( ,t), the Marginal Spectrum 
is defined simply as



T N

i
i 10

is defined simply as 

        h( )  =  H( ,t) dt  = H( , t ) .  


i 10

Simple as it seems, the actual computation and evaluation
is more involved.  The main reason is that, with the adaptive
basis, we do not have the rigid  limitation on frequency resolution
dictated by the total data length and the uncertainty principle.

Th f d h i f f i l i hThe freedom on our choice of frequency-time resolution; however, 
makes the marginal frequency evaluation much more complicated.  
We need to define it rigorously for detailed comparisons withWe need to define it rigorously for detailed comparisons with
other forms of spectrum.



Earthquake data E921q



MHS Different Frequency 
ResolutionsResolutions



MHS Different Resolutions 
NormalizedNormalized



Some Recent AdvancesSome Recent Advances

• Ensemble EMD (EEMD)
• Instantaneous Frequency (Quadrature)Instantaneous Frequency (Quadrature)
• Quantification of Hilbert Spectrum
• Multi-Dimensional EEMD (MDEEMD)
• Time Dependent Intrinsic Correlation• Time Dependent Intrinsic Correlation 

(TDIC)
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The EEMD components of 
the vertical velocity. 

In each panel the colorIn each panel, the color 
scales are different, the blue 
lines corresponding to zeros.



HURRICANE (w): DATAHURRICANE (w):  DATA



HURRICANE (w): C1HURRICANE (w):  C1



HURRICANE (w): C2HURRICANE (w):  C2



HURRICANE (w): C3HURRICANE (w):  C3



HURRICANE (w): C4HURRICANE (w):  C4



HURRICANE (w): C5HURRICANE (w):  C5



Two dimensional HHTTwo dimensional HHT

100



ConclusionConclusion
Ad ti th d i th l i tifi llAdaptive method is the only scientifically 
meaningful way to analyze data.

It is the only way to find out the underlying 
physical processes; therefore, it is indispensablephysical processes; therefore, it is indispensable 
in scientific research.

It is physical, direct, and simple.

But, we have only started and what we have done 
is only a scratch of the surface.



Outstanding Mathematical ProblemsOutstanding Mathematical Problems

1 Adaptive data analysis methodology in general1.Adaptive data analysis methodology in general

2.Nonlinear system identification methodsy

3.Prediction problem for nonstationary processes 
( d ff t )(end effects)

4 Optimization problem (the best IMF selection 4.Optimization problem (the best IMF selection 
and uniqueness.  Is there a unique solution?)

5.Spline problem (best spline implement of HHT, 
convergence and 2-D)



http://rcada.ncu.edu.tw/research1.htm

At this website you will find all the programs y p g
used in HHT and many references.





Some Recent AdvancesSome Recent Advances

• Ensemble EMD (EEMD)
• Instantaneous Frequency (Quadrature)Instantaneous Frequency (Quadrature)
• Quantification of Hilbert Spectrum
• Multi-Dimensional EEMD (MDEEMD)
• Time Dependent Intrinsic Correlation• Time Dependent Intrinsic Correlation 

(TDIC)








